Archive for April, 2014

Knitendo

April 23, 2014

Vintage pattern editing with video games

niendo knitting

In the late 1980’s an amazing idea from Howard Phillips who worked for Nintendo made a peripheral prototype for the NES: a knitting machine! Connected to the NES, you would be able to knit and edit a jacquard pattern from your software. The prototype was shown at the 1987 Winter Consumer Electronics Show but didn’t get much attention. And sadly, this was never manufactured to get to consumers homes.

I Am A Teacher: Super Mario Sweater (アイアムアティーチャー スーパーマリオのセーター )

mario sweaters

In Japan, another pattern editing software appeared in 1986 for the Famicom Disc System. And it was apparently a big success. This was probably made to attract women in buying video games and would learn you how to knit a sweater or cardigan. Adjusting pattern and size, you would then send to the company your design and get your jumper manufactured for 24$.

System: Famicom Disk System
Developer: Royal Industries Co. Ltd.
Publisher: Nintendo
Release dates:
August 27, 1986 (Japan)

Here are some screen shots of the software:

I am a Teacher - Super Mario Seta (1986)(Nintendo)-0 I am a Teacher - Super Mario Seta (1986)(Nintendo)-11 I am a Teacher - Super Mario Seta (1986)(Nintendo)-16 I am a Teacher - Super Mario Seta (1986)(Nintendo)-18

 

Pattern programming with the Commodore 64

Lucy using  her Commodore 64 in 1988 for interactive calculation of knitting parameters.

 

Commodore 64 graphic book step by step programming:

here are a more pictures

 

Multithreaded Banjo Dinosaur Knitting Adventure 2D Extreme!

A nice art project where you knit out directly your winner panels from the video game using a hacked knitting machine with a key emulator and arduino.

Travis Goodspeed, Arjan Scherpenisse, and Fabienne Serriere

dinosaur knit

Nintendo embroidery from Per Fhager.

Nuts & Milk, 2013
89X102cm, chain stitch, cotton
(Crafted Worlds 2) source Nuts and Milk- 2013_800

 

 

Algorithme

April 19, 2014

 

Algorithme (Programme).

“L’algorithme est une suite finie de règles formelles que l’on applique à un nombre fini de données, afin de résoudre des classes de problèmes semblables, c’est une série d’opérations élémentaires retranscrites par un code. L’algorithme, qui est une opération itérative et répétable, participe de ce que nous nommons un processus de grammatisation.

Avec ce premier organe à calculer qu’est la main, l’homme encocha des bois, puis entassa de cailloux (calculi), puis constitua abaques et bouliers. Le fonctionnement d’un boulier ne nous aide-t-il pas déjà à comprendre qu’une opération de calcul peut se traduire en gestes séquentiels opérant selon des instructions binaires (rapprocher la boule de la barre centrale ou ne pas y toucher) ? Ces gestes, de notre point de vue, sont des grammes. Lorsqu’un enfant pose sur papier une multiplication qu’il ne pourrait résoudre autrement, il montre comment stylo, cahier, main et cerveau participent d’un même algorithme. Mais, contrairement à ce que l’on croit, l’algorithme ne concerne pas seulement les procédés de calcul, au sens étroit du mot, puisque, pour prendre un exemple très simple, chercher un mot dans le dictionnaire relève déjà d’un algorithme.

Devenir algorithmique. La principale caractéristique d’un ordinateur est sa programmabilité1, et l’usage tend aujourd’hui à confondre « algorithme » et « programme ». Pourtant, la programmation informatique n’épuise pas la question de l’algorithme, en ce sens que l’on ne programme que ce qui relève déjà du champ de l’algorithme c’est à dire ce qui a déjà été engrammé, discrétisé, formalisé, et qui autorise ainsi sa manipulabilité. À ce titre, ce qui relève de l’algorithme est plus vaste que la définition mathématico-informatique qui lui est de nos jours systématiquement accolée.Le devenir algorithmiquede notre monde, de notre vie, participe de ce que nous nommons le processus de grammatisation. Le devenir algorithmique s’accélère avec les technologies numériques, mais il préexistait. Ainsi le devenir algorithmique s’inscrit déjà, par exemple, dans ces conversations commerciales que l’on nous impose au téléphone avec les télévendeurs qui déclenchent un script prédécoupé en unité de base et exécutée selon un ordre donné. Taylor a conquis le langage ! Et c’est parce que cette conquête a déjà eu lieu qu’il est possible à Google ou à Facebook d’exister. Le devenir algorithmique ne concerne pas seulement le langage informatique mais la langue elle-même, pas seulement les machines mais les humains”    

de Bernard STIEGLER

 

Cellular automata knitting

April 18, 2014

 

The Conway”s Game of Life  or cellular automata is a good example. It consists of a collection of cells which, based on a few mathematical rules, can live, die or multiply.  The pattern evolves in very surprising ways and can become very complex based on very simple rules.  “It also opened up a whole new field of mathematical research, the field of cellular automata… Because of Life’s analogies with the rise, fall and alterations of a society of living organisms”.

http://www.bitstorm.org/gameoflife/

And here a nice open source programme if you want to play: http://golly.sourceforge.net/

The wonderful world of cellular automata can be explored where 2D patterns are generated with simple rules.

ElementaryCA_850 ElementaryCARules_900

cellular_automata_evolutions

You can find a few generators on the web, here is my favourite one:

http://sjsu.rudyrucker.com/nksapplets.htm

Here are a few examples i made using it:

cellular5

Capture matrix

I used processing to generate the patterns below which is very practical if you want to knit it. If you open processing you will have cellular automata in your examples and you can then change the size in the code and save it into a .png file.

                                         cellar automata                            cellular automata

CAKNITTING                  caknitblue

Results of cellular automata Knitting

Islamic geometrical pattern

April 18, 2014

Islamic geometrical pattern.

In Islamic art we find very mathematical ways of designing geometrical patterns. The gigantic mosaics are made to represent an infinite pattern which can go beyond the visible world. That can explain why the designers had to find ways of constructing patterns which could have complex ways of repeating themselves. The Egyptians where advanced on mathematics. We also know that during the Islamic golden age,  ancient texts on Greek and Hellenistic mathematics as well as Indian mathematics were translated into Arabic.

56104-large 56105-large 56118-large 56123-large 56245-large 56260-large Mekhnes_Place_El-Hedine_Mosaique2 Tassellatura_alhambra

We can find in these designs very advanced mathematical rules to create such big designs without any errors, especially for building that are 800 years old. Surprisingly, I have found great similarities with the Penrose Tiling named after mathematician and physicist Roger Penrose in the 1970s. Their are different sorts of ways to compose a what we call “aperdiodic tiling” pattern. Aperiodic tiling by it’s definition “can only tile the plane in a non-repeating manner. This is in contrast to non-periodic tiling that can tile the plane in an irregular manner but can also do so in a regular, periodic fashion.”

Here is a very good explanation of different sets of aperiodic tilling: http://grahamshawcross.com/2012/10/12/aperiodic-tiling/

I also found this interesting article that speaks about research on ancient Islamic Penrose tiling: here

Other ressources:

Girih tiles

Aperiodic Tiling1Tile-coloured Aperiodic_tiling_with_3_tiles Binary_patch_03 Frett_K_B_03 Golden_Rhomboid_Triangle petra_2_gr_1 robinson_patch_03

Here is a very good encyclopedia of wonderful mathematical tilings.

On my page of Tools to create and explore computer generated patterns you can find some programs to generate Penrose tilings.

A few links for mathematical textile/

http://lib.fo.am/mathematickal_arts_2011

http://delta.fo.am/re-touches

http://www.toroidalsnark.net/mathknit.html